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For N;O, the results of STO-6G calculations indicate that a valence-bond structuith a 7 electron
configuration R[zzy(NO) ] 7z(O)][7r,(NO)]*[7,(O)]%, in which R = [m«(NN)]?[7,(NN)]?, generates a lower
energy than does resonance between two valence-bond struttuaes||l , with r electron configurations
Rl(NO)]q7,(O)]? andR[7,(NO)]q7(O)]? respectively. In each of these three structures, the central nitrogen
atom is apparently pentavalent. A similar conclusion is obtained from the results of the corresponding
calculations for isoelectronic HCNO, witR = [7,(CN)]?[sry(CN)]2. Using HCNO+ HCCH — isoxazole as

the example, valence-bond representations for 1,3-dipolar cycloaddition reactions are compared using the
above types of valence-bond structures. FgDNthe bond orders that are implied by structuydout not
those by structured andlll , are shown to be in qualitative accord with the observed bond lengths. The
energy for structuré is also calculated to lie below that forRiz,(NO)]?[7ry(NO)]? configuration, in which

the central nitrogen atom &pparentlyhexavalent.

Introduction asiya =y + ka andypa = b + Ia, in whichk and| are
variationally determined polarity parameters. The four electrons
may be accommodated in these MOs, to give the LMO
configuration®(LMO) = |¢y2pyLYuyud’], in which o and

B are thems = +/, andms = —1/, spin wave functions. The
associated VB structure may be represented as &tbe8, in
which the A atom isapparentlydivalent®

Since the 1860’$2324the nitrogen atom has sometimes been
assigned a valence of five in valence bond (VB) structures for
a number of covalent molecules. Structdréor linear NbO is
an example of this type of VB structure.

N=N==O0
1
Y—A—B Y:A:B Y—A (?i
As a consequence of conclusions that have been obtained from 2 3 4

spin-coupled VB calculationspentavalent (or quinquevalent)
nitrogen atoms have featured prominently in VB structures that  These VB structures may be generdéé"from the Lewis
have been constructed fop® and a number of other 1,3-dipolar VB structure4 by delocalizing the B electrons into thgy,
molecules. Summaries of attempts to account quantum mechanibonding MO, as indicated. When this procedure is applied
cally for the occurrence of nitrogen pentavalence have beenseparately to thery electrons and ther, electrons of the
provided in refs 1m and 3a. The essential concluSianthat (zwitterionic) Lewis structure5 for N2O, we obtain the
unless the nitrogen atom expands its valence shell in a VB apparently pentavalent VB structuréand7. Similar types of
structure, for example, via a 2p°3d! configurationtd the

pentavalence (and the associated octet violatio@pisarent © _D,e

U ; ) INS=N—1-0: — :N=N—0:
not real. The apparent violation of the Lewisangmuir octet - -
rule arises from the inclusion of singlet-diradical (or “long- 5 6
bond”) Lewis structures in an equivalent canonical-structure ® o
resonance schende.d Because nitrogen = 3 atomic orbitals INS= 0: — :N=N—©O:
(AOs) make only very minor contributions to bonding in the 5 b 7

ground states of nitrogen-containing molecules, further consid-

eration will not be given in this paper to the high-energy VB structures have been provided previoddifor CHzN,, Os,

expanded valence-shell structures. and HNs. An apparent pentavalence is also present in the VB
Linear NO has two degenerate 4-electron 3-center bonding structure8, which may be derived®°from the Lewis structure

units, one for ther, electrons and one for the, electrons. For

a 4-electron 3-center bonding unit, we may construct two _@ (\@
nonorthogonal localized molecular orbitals (LMGsJhus, if =NTJ° — IN==N—0:
Y, A, and B are the three atomic centers, and y, a, and b are 5 8

the associated overlapping AOs, these LMOs may be expressed
ppIng y P 5 by delocalizing one 2p, and one 2py electron from the O

t University of Melbourne. |nto_ bonding 7,(ON) and ,(ON) LMOs. The latter pair of
* Ludwig-Maxmilians University of Munich. orbitals are examples of thgy, type LMOs.
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Valence Bond Structures for,® and HCNO

For one 4-electron 3-center bonding unit, the preference of a

one-electron delocalization of the type—~ 9 over the concerted

Y—A ﬁé — Y—A . B
4 9

two-electron delocalizations of the tyge— 2 or 3 has been

demonstrated in ref 5h. (By concerted, it is meant that the two
electrons occupy the same orbital at all stages.) In this paper

we compare the minimal basis set energie8 sf 7, with that
for structure8, to provide further support for this theory. With
a minimal basis set, we shall demonstrate thatdthe 9 type
delocalization for each set oty and my, electrons is to be
preferred energetically to the concertdd— 2 or 3 type
delocalizations for either set ofr, or s, electrons. For
isoelectronic HCNO, we also obtain a similar conclusion from
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1) (LMO) =| o, f o B e yﬁb:(lbrﬂ| (3)
6 1/}ya Wya wba Wbalpya Wya

D7(LMO) = [y “ya Ve ¥y W'y "'y D] (4)

Two degenerate, three-parameteelectron wave functions
for VB structure8 may be constructed from the LMOs of egs
5 and 6. With four singly occupied orbitals, namely,s b,

7 (NN) =y, =y + ka 7,(ON)=y,,=b+la
7 (NN)=y' =y +kd 7 (ON)=y,,=b +1a (5)

7 (NN)=vy',, =y +Ka m,(ON)=y,,=b+la
7(NN) =y, =y +ka 7 (ON)=y,, =b +1a (6)

Ywa, and b, two S= 0 spin Rumer-type wave functions may
be constructed-3e*ffor structure8, namely, those of eqs 7 and 8,

the results of the corresponding calculations for VB structures i, \whichRis eitherpy sy 'y a ™'yl OF 'y sy a®y .

10-12.

HC=N==Q: <> HC=N—0:

10 1

HC:N+(:):
12

Dg(Ypa by —b) = |R1/Jbaalfwb'a'ub'ﬂ| +
IRy 0%y 0% — IRy 2y %] —
IRy 0y b7 (7)

Because only minimal basis sets are used, the VB calculations

are certainly modest by current standards. However, the fol-

lowing considerations provide support for the qualitative conclu-

sion obtained from the calculations, namely that the energies

for structures3 and12 lie below those fo < 7 and10< 11,
respectively.

(a) The degree of electron charge correlation is larger in
structures8 and12.

(b) The presence of radical-like character in struct@&easad
12is indicated explicitly. This radical character helpgONand
HCNO to react with certain radicals and to participate in 1,3-
dipolar cycloaddition reactions.

(c) The bond orders that can be associated with strucires
andl12 are in better accord with the experimental bond lengths
than are those fof < 7 and10 < 11

Dy(1pab Py —b) = Ry 1y "0 | +
IR b a0 — IR %y 07 —
IRy 0,0 (8)

Becausebg(yna—b,yrya—b") of eq 7 involves opposed spins
for the m-type ypa and b electrons, and for the-type yp«
and B electrons, this wave function must be the dominant
Rumer-type wave function. Th@g(ypa—b',yna—b) of eq 8,
with yp—b' and ypy—b spin-pairings for their associated
electrons, will therefore be omitted from the subsequent
treatment, and thebg(yna—b,yra—b') will be subsequently
designated ads.

For the corresponding calculations with VB structutés-12

Aspects of these considerations will be described later in the for isoelectronic HCNO, we have assumed that the carbon and
paper. In Appendix 1, some comments are provided with regard nitrogen atoms use equivalent sp hybrid AOs for € C—N,

to the use of doublé-basis sets.

Method

Ab initio VB calculations were performed using Roso’s
programi® An STO-6G basis with carbon, nitrogen, and oxygen
“best-atom” exponent$ and the experimental geometrigs,

and N-O o bond formation.

Results

For the wave functions described via egs7l the energy-
optimizeds electron parameters for.® and HCNO and their
associated energies are reported in Tables 1 and 2. Similar types
of results are obtained for both molecules. Thus, fe®Neither

were assumed. (The hydrogen atom of HCNO was assigned ary, two-parameter or a three-parameter calculation for increased-

exponent of 1.2 for its 1s AO.) The closed-she#lectron core
was treated (see Appendix 1) as described in ref 2d, and the
electrons were treated initially in the following manner, which
we describe for MO:

For structure$ and7, LMOs for thes electrons are defined
according to eqs 1 and 2, in which y, a, and b are thex2p
AOs, and y, d, and b are the 2y AOs. The resulting$= 0
7 (NN) =y, =y + ka 7' (NN) =y’ =y +Ka

T (ON)=y,,=b+la (1)

7 (NN)=y',=y+ka m(NN)=vy,, =y +ki

7 (ON) = g = b +18 (2)

spin) wave functions for the electrons of these structures are

given by egs 3 and 4. Each of these degenerate configurations

possesses three variational parameterk), andl.

valence structur8 generates a substantially lower energy than
does resonance betweeh and 7, with three variational
parameters. However eq 7 for struct@e&ccommodates the
two N—O x bonding electrons in separate LMOs (thg, and
Ypa Of egs 5 and 6), whereas in each of eqs 3 and 4 for
structuress and 7, the two N-O s bonding electrons occupy
the same LMO (either thep,, or the ypg of egs 3 and 4).
Therefore, the two NO & bonding electrons are better
correlated spatially in structu@than they are in structures
and 7. To introduce some NO x electron correlation into
structuress and 7, we have proceeded as follows.
Theypynd of eq 3 and thepya*yya” of eq 4 are replaced
With® 9" by bl + 9" bay'vf andy'va®y" vl + 9"'ba™ Y val,
respectively, in which the LMOs are defined according to eq 9.

"a=b+1'a
Yoy =b +1'd

Yha=b+1"a
,l/)llb’a' — bl _"_ |Ilal (9)
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TABLE 1: N,O Energies €, kcal mol™) Relative to Further Comments on Valence Bond Structures
Three-Parameter Structure 8 andar electron Polarity L
Parameters (Egs 1, 2, 5, and 6) for VB Structures In ref 2¢, it is indicated that resonance between VB structures
6 7and8 of types6 and 7, or 10 and 11, is equivalent to resonance

E K K | between 27 canonical Lewis structures, whereas VB structures

of type8 or 12 are equivalent to resonance between 25 canonical

8 0.0 0.643 2.179 0.483 : :

8 56 1108 1108 0497 Lewis structures. Except for the canonical structdr@s18 for

67 44.2 0.743 1.585 0.881 e . e ® o o e e
Y—N—UO: Y—N—UO: Y—N—0:

TABLE 2: HCNO Energies (E, kcal mol~1) Relative to the
Three-Parameter Structure 12 andx electron Polarity 13 14 15
Parameters (Eqgs 1, 2, 5, and 6) for VB Structures

10< 11 and 12

[S] @ ® ® @ [S] @

E k K ! y—F—6  ¥y—N—0:  y—N—¢O:
12 0.0 0.648 2.227 0.477 16
12 5.0 1.208 1.208 0.500 17 18
1011 42:5 0785 1.590 0.855 the6 < 7 or 10 < 11resonances, antbh—22 for 8 or 12, with
TABLE 3: N,O Energies €, kcal mol-2) Relative to Y equivalent to either :N or HC, the remaining canonical
Three-Parameter Structure 8 of Table 1 ands electron structures contribute to both types of resonance schemes. In the
Polarity Parameters (Eqs 9-11) for VB Structures
6<7and8 0. Te o ® e e
E K K I " Yy—i=0:  Y—N=—0: = y—N—O
8 00 0643 2179 0483  0.483 16 T ) - }
8 -17.1 1.230 1230 0145  1.999 20
67 —-5.3 1.21 1.21 0.15 6.00
67 —6.2 1.14 1.26 0.15 6.15 ® o o
Y—N—O:
TABLE 4: HCNO Energies (E, kcal mol1) Relative to
Three-Parameter Structure 12 of Table 2 andr electron 22
Polarity Parameters (Eqs 9-11) for VB Structures singlet diradical structurek9—21, each of which involves either
10< 11 and 12 .
. - one or two “long” or formal bondr bonds, and in structur22
E k K ' ' with two N—O x bonds, the electrons of these bonds are better
12 0.0 0.648 2.227 0.477 0.477 correlated spatially than are the correspondinglectrons in
12 —15.7 1.250 1.250 0.145 1.940 structurest 3—18. These charge-correlation considerations imply
1011 —4.3 1.22 1.22 0.15 5.82 that structure49—22 should make a larger contribution to the

1011 —45 115 1.28 0.15 5.98 Lewis canonical structure resonance scheme for the ground state

h i function f b than do structure$3—18. This conclusion is supported by the
The resulting wave function for resonance between Structures o its of hoth semiempirical and ab initio VB calculatigh¥:14.15

6 and7 involves four Slater determinants and four variational Therefore, for the same AO basis set, it is not surprising that

parametersi Kk, I, andl”). With these parameters chosen g structures of the typ® or 12 generate a lower energy than
variationally, the energy for thé <> 7 resonance now lies 6.2 {5 the6 < 7 or 10 < 11 resonances.

kcal mol! below the three-parameter energy for struct8re Increased-valence structur@sl, 26, and 28, which can
(Table 3). However, a better three-parameter wave function for participate in resonance with increased-valence strugturay
VB structures of type is obtained by using eithg'va=b + be constructe®ddefrom the standard Lewis structur@s, 25,
I'a andy''yva = b +1"d ory'"va=b + 1"aandy'yy = b +
I'a instead ofypa= b + la andyyz = b’ + 1d in eq 7, together e__e (. TR
with k = K in 1y, and yy4.The resulting wave functions for N = : NTEN==0:
structure 8 are given by egs 10 and 11, in whidR = 23 24
Yy Pyd Yya“Pyal. .} @ @, &,
:N=NTJQ: —_— IN=—N—0¢
q)s(l) — |R1/)'baab8w”b'a{ab'ﬂ| + |R1/)'baﬁba1/}”b'aﬂb'a| _ 25 2
IR o0y 0% — IRy, LBy %07 (10) Q) oo o. ®

g ; ; ; IN—N=0: —— IN——N==0:

@8(2) — |R,l/)rrba& ,l/)lb,a'(lbr[| _I_ |R,l/)rvba[ b(l,l/}rb'a’[ bv(1| _ 27 28

" 1 ﬁ ! _ " ﬁ I lﬂ . . . -
IR0y 0% = IRy Po%yy 407 (12) and 27, respectively, via the one-electron delocalizations that
are indicated in the latter three structures. Formal charge consid-

When the polarity parameteks!’, andl” for &g = dg(1) + erations and the results of some VB calculatfdfisindicate
®g(2) are energy-optimized, the resulting energy for structure that8is the primary increased-valence structure, and therefore
8 (Table 3) now lies 11.9 kcal below that for the6 < 7 we shall use this structure in the subsequent discussions.

resonance, with four variational parameters. Similar types of )

results are obtained for the analagous calculations for the HCNOVaIence L_%pnd StrucFures and Concerted 1,3-Dipolar
structuresl0—12 (Table 4). Therefore, according to these calcu- Cycloaddition Reactions

lations,8 and12 provide better VB representations of electronic Increased-valence structuBéor N,O has been used to show
structure for NO and HCNO than d& < 7 and10 < 11 succinctly how electronic reorganization can proceed for the
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Figure 1. VB representation for fulminic acid- ethyne— isoxazole
cycloaddition.

following types of gas-phase reactions: (a) thermal decom-
position to generate N+ 0*,248.18 (b) radical transfer, for
example, NO + H — N, + OH,24819(c) C,, — Cp, — Den
isomerization of NO,2%2 (d) 1,3-dipolar cycloaddition, for
exampleXd8the formation of a cyclointermediate in the reaction
N.O + RRC=CH, — CH;N, + RRC=0O, and (e) the
reaction83296NO + NCO — N,O + CO and F + N,O —
FoNO. Increased-valence formulations of electronic reorganiza-
tion for gas-phase 1,3-dipolar (or zwitterionic diradical
hybric?°42) cycloaddition reactions, have been provided on a
variety of occasiong?d3d.9c.10a2Here, we shall use the fulminic
acid + ethyne— isoxazole cycloaddition to compare this type
of formulation with that provided by Cooper et“dl.

Using increased-valence structdr2to represent HCNO, the

J. Phys. Chem. A, Vol. 104, No. 27, 2008613

Scheme D of Figure 1 also uses VB structdfeand does
not involve charge transfer between the reactants. However,
structurel2 of Scheme A is to be preferred to structdrke and
the activation of the oxygen 2p electron of12 to form the
intermolecular G-C bond of Scheme A must require less energy
than that needed to activate thg{ON) bonding electrons in
Scheme D to form the same intermolecular bond.

N—N and N—O Bond Lengths

Estimates of the lengths of “normal”N\N and N-O double
and triple bonds afé 1.24 A (CHEN=NCHa), 1.10 A (N,
1.21 A (CHN=0), and 1.06 A (NO). Therefore, the NN
and N-O bond length®a of 1.13 and 1.19 A for DO are
respectively only slightly longer than the-\N triple bond of
N2 and similar to an N-O double bond. Increased-valence
structure8 involves an N-O double bond with ad(NO)J?
[7(NO)]Y[7r(NO)]* configuration, and a fractional \N triple
bond that consists of an electron-pairbond and fractional
electron-paitry andmzy bonds. We shall now demonstrate that
the resulting values of two and less-than-three for the simplest
type of N—O and N—N bond orders, namely Coulson-type bond
orders?® which omit AO overlap integrals, are in qualitative
accord with the observed bond lengths foiON

For the AOs that are involved in NN ¢ bonding for NO,
we note initially that a hybridization difference exists between
the AOs of the central nitrogen atom ot® (s+ p) and each
nitrogen atom of N (~p + 0.35s¥¢. The results of STO-6G
VB calculationd® indicate that the NN bond of N, with
p + 0.35s hybridization for both nitrogen atoms~€.03 A
longer than a hypothetical Nvith p + 0.35s hybridization for
one atom and g- s hybridization for the other atom. With this

electronic reorganization proceeds according to Scheme A of estimate for a hybridization correction, the-N bond length

Figure 1. In contrast, Cooper et “4lhave performed spin-
coupled VB calculations for HCNO and concluded that the
HCNO analogue of structurg, which we assume here corre-
sponds to thel0 < 11 resonance, should be the primary VB
structure for the ground state of this molecule. (Cooper et al.
did not give consideration to structut@.) These workers have
formulated the cyloaddition according to Scheme B of Figure
1, in which we have used structutd rather than the HCNO
analogue of structurd. Three problems are associated with
Scheme B. First, the results of our calculations show that the
energy of structurd2is lower than that obtained via tH® <

11resonance. Second, Scheme B, as well as Scheme C, involve

charge transfer between the reactants. With a 6-31G(d,p) basi
set, we have used GAUSSIAN 94 to calculaté? the atomic
net charges (NBO analysis) for the transition state of the HCNO
+ HCCH cycloaddition (B3LYP geometry).

Summing these net charges gives total net charge®@f09e
and+0.009e on the HCNO and HCCH maoieties. These values

of 1.13 A is 0.06 A longer than an AN triple bond with
the same AO hybridization. Using2) = 1.24 A andr(3) =
1.07 A, the Pauling-type bond-orden)tbond-lengthr(n)
relationship® r(n) = 1.24 — 0.565 logf — 1) gives an N-N
bond order of 2.57 for pD.

For increased-valence struct@ewith a (y+ laf(a+ kb)i(b)*
orbital configuration, we may use eqs 31 and 32 of ref 5g,
with I’ = 1/" = | in these formulas, to calculate the Coulson-
type Y—A and A—B bond ordersy, andPa, The simplestt
electron formulation for increased-valence struc@inevolves
(y + la(a+ kb)}(b)! and (y + la)3(@ + kb')X(b')! configura-

S]%ons. Withn(NN) = 1 + Pya + Pyy = 2.57, we obtairPy, =

va = 0.785. When an NO bond order of 2 is assigned to
structure8, N(NO) = 1 + Pay + Pay givesPap = Pay = 0.5.
The resulting values fdtandl are 0.58 and 0.98, respectively.
Therefore, increased-valence structi@eaccommodates the
Coulson bond orders that can be associated with the experi-
mental bond lengths of #D. In refs 27 and 28, the use of
Wiberg bond indices to discuss bond lengths is considered.

indicate that little net charge transfer occurs between these A fractional N-N triple bond is also present in either of the
species. Therefore, charge-transfer VB structures must contributeyg structures6 and 7. However the N-O bonds of these

only slightly to the VB resonance scherfeThird, Cooper et

structures are fractional double bonds, i.e(NO) < 2.

al. prefer Scheme B to Scheme C. However the energy requiredTherefore, VB structureé and 7 imply that the N-O bond

to activate the twary(ON) bonding electrons in Scheme B must

length for NO should be longer than an-ND double bond.

be larger than the energy needed to activate either the oxygerThe expanded valence-shell structdrénvolves n(NN) = 3,

lone-pair 2prk electrons for charge transfer in Scheme C, or
the oxygen 2py electron for pairing with a carbon 2pelectron
of ethyne in Scheme A. It is noted also that because the

increased-valence structure for HCNO in Scheme A has a lower

rather than a fractional triple bond. Consequently, with regard
to bond lengths, VB structu@provides a better representation
of electronic structure than do structurkss, and?.

Similar types of considerations apply to the-8 and N-O

energy than has the Lewis structure of Scheme C, Scheme A isbond lengths that are implied by VB structur&6—12 for

preferred to Scheme C.

HCNO.
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TABLE 5: Hartree —Fock Wiberg and NLMO Bond Orders

STO-6G 3-21G 6-31G(d) 6-31#G(3df)
Wiberg NLMO Wiberg NLMO Wiberg NLMO Wiberg NLMO
Individual Bond Orders
N1-N2 2.39 2.44 2.47 251 2.54 2.57 2.53 2.58
N2—-03 1.46 111 1.45 1.19 1.47 1.24 1.47 1.22
N1-03 0.58 —0.32 0.53 —0.29 0.49 —0.28 0.49 —0.26

Total Bond Orders
(a) Without -3 Interaction

N1 2.39 2.44 2.47 2.51 2.54 2.57 2.53 2.58

N2 3.84 3.55 3.93 3.70 4.01 3.81 4.00 3.81

03 1.46 111 1.45 1.19 1.47 1.24 1.47 1.22
(b) With 1—3? Interaction

N1 2.97 211 3.01 2.22 3.03 2.29 3.02 2.32

N2 3.84 3.55 3.92 3.70 4.01 3.81 4.00 3.81

03 2.03 0.79 1.98 0.90 1.97 0.96 1.96 0.96

21n the Wiberg scheme, the NIO3 interaction is a positive quantity as no distinction is made between bonding and antibonding interactions;
however, a negative bond order is obtained when using the NLMO procedure.

Apparently Hexavalent Nitrogen structure8 from structure5 generate a lower energy than do
. two concertedelectron-pair delocalizations that are needed to
In ref 2b, VB structure9.and30 are also provided for 0 obtain structur®9 from structures. We have already indicated
that the4 — 9 one-electron delocalization is preferred energeti-
cally to the concertedd — 3 delocalization for a pair of
) o e electrons.
‘N=N==0: HC=N==0: Note Added in Proof. Of course variationally determined
29 30 nonconcerted electron-pair delocalizations will lower the ener-
gies of structure®9 and 30 relative to structure§ and12, in
valence’ it may be demonstratégP9that the maximum valence  each of whit a b electron and & felectron remain localized
for this atom must be four for any of the configurations of eqs on the oxygen atom. However, the extent of delocalization of
12—-15 below. Using the usual assumption that atomic net the latter electrons should be small (cf. valued'aind!” in
charges displayed in a VB structure are those that arise whenTables 3 and 4 foB < 7 and10< 11), and therefore structures
bonding electrons are shared equally by a pair of adjacent atoms8 and12 should be good approximations to the counterintuitive
the net charges displayed2® and30 are counterintuitive. This  structures29 and 30.
is not the case for VB structurés-8 and10—12, with apparent
pentavalence for the central nitrogen atoms. As indicated in refs conclusions
2b,c and 9g, the apparent violation of the Lewlissngmuir octet
rule arises because singlet-diradical Lewis structures contribute For each of NO and HCNO, we have demonstrated that,
significantly to the equivalent resonance schemes with canonicalWith minimal basis sets, one-electron delocalizations of oxygen
Lewis structures. 2pmry and 2pry, electrons into bondingx(ON) andsr,(ON) LMOs
We have also performed some three-parameter calculations'e preferred energetically to electron-pair£p — [7(ON)J?
for the NbO structure29, using the configurations of eqs 425: and (2pry)” — [(ON)J? (or (2pm)” — ['X(ON)J'[z"x(ON)]*
and (2pr,)? — [7'y(ON)]Y{=""(ON)]*) delocalizations. Therefore,
= % Byt S By % Byt % P structures8 and 12 provide lower-energy primary VB repre-
Pael) Wya ¥ya ¥'oa ¥oa Yy Yya ¥oa Ve | (12) sentations of electronic structure than@le> 7 and10 < 11.
D,4(2) = |zpya“wyaﬁzp'ba“w'ba/’wy,d“wy,dﬁw"b,d%p”b,aﬁ (13) This result is shown to be in accord with electron correlation
and bond-length considerations. By exploiting their explicit
D,4(3)= |wyauwyaﬂw"baaw"baﬁwy,datpy,dﬂ VoV | (14) singlet diradical character, structu&and12 can be use8920
to indicate succinctly how the primary features of electronic
Do) = [Py Wy Y oW ol Wy Wy ¥ g W e | (15) reorganization could proceed for a variety of gas-phase reactions
that involve these molecules and rel&@fet! 1,3-dipolar
in which the LMOs are given by eqgs 16 and 17. The energy- molecules.

optimized values for the parameteks!’, and|” for ®,9 =
C(1)P29(1) + C(2)[P29(2) — D2go(3)] + C(4)D29(4) are 1.2,
0.5, and 0.5, respectively. The corresponding calculation for

and HCNO. In these structure, the central nitrogen atom is
apparently hexavalent. However, with the Wiberg definition of
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Appendix 1: Treatment of the Valence-Shelle Electron

structure8 (cf. Table 3, fork = 1.230,I" = 0.145, and" = Core and Basis Sets

1.999) involves the linear combinatichg = ®g(1) + Pg(2)
with dg(1) anddg(2) given by egs 10 and 11. The energy for For N,O, the nitrogen and oxygen lone-pair AOs and the
structure29 is thereby calculated to lie 11.7 kcal mélabove N—N and NOo bond LMOs are defined in eqs—2 of ref 2d,
that for structureB. The results of these calculations indicate but with the simplifying assumption the central nitrogen uses
that the two one-electron delocalizations that are used to obtainequivalent sp hybrid AOs; i.e., the hybridization parameter
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TABLE 6: CISD(fc):Wiberg and NLMO Bond Orders
STO-6G 3-21G 6-31G(d)
Wiberg NLMO Wiberg NLMO Wiberg NLMO
Individual Bond Orders

N1—N2 2.12 2.35 2.25 2.44 2.31 2.50
N2—-03 1.44 1.18 1.43 1.25 1.44 1.29
N1-O3 056 —0.38 054 -0.34 051 -0.33
Total Bond Orders
(a) Without -3 Interaction
N1 2.12 2.35 2.25 2.44 2.31 2.50
N2 3.56 3.54 3.67 3.69 3.75 3.79
03 144 1.18 1.43 1.25 144 1.29
(b) With 1—32 Interaction
N1 2.68 1.97 2.79 2.10 2.82 2.18
N2 3.56 3.54 3.67 3.69 3.75 3.79
03 2.00 0.80 1.97 0.91 1.95 0.96
*See Table 5.

has been set equal to unity in eqs 3 and 4 of ref 2d. The polarity
parameters for these bondsgnd« of egs 3 and 4 of ref 2d),
were chosen variationally, with nine canonical Lewis structures

included in the VB resonance scheme. Their values are 1.61

and 1.29. For HCNO, the €H o bond replaces the terminal

J. Phys. Chem. A, Vol. 104, No. 27, 2008615

structureB provides a simpler qualitative picture of the electronic
structure of NO than do the ab initio MO results reported.
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